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Abstract. We discuss thermalization of a test particle schematized as a harmonic oscillator and coupled
to a Boltzmann heat bath of finite size and with a finite bandwidth for the frequencies of its particles.
We find that complete thermalization only occurs when the test particle frequency is within a certain
range of the bath particle frequencies, and for a certain range of mass ratios between the test particle and
the bath particles. These results have implications for the study of classical and quantum behaviour of

high-frequency nanomechanical resonators.

PACS. 05.40.Jc Brownian motion — 05.70.Ln Nonequilibrium and irreversible thermodynamics — 62.25.-g
Mechanical properties of nanoscale systems — 83.10.Rs Computer simulation of molecular and particle

dynamics

Since the pioneering studies on Brownian motion and its
interpretation at the molecular level [1], the study of open
systems has been a crucial area in both classical and quan-
tum statistical mechanics. The theory of open systems al-
lows one to bridge the closed, pure-state dynamics of a
particle with the open, mixed-state dynamics in the pres-
ence of coupling to an environment. The deterministic dy-
namics of the particle considered as a closed system is re-
placed in the quantum regime by a stochastic Schrodinger
equation, corresponding to a stochastic Newton equation
in the classical limit. In the classical case, the environment
can be represented as a heat reservoir consisting of a large
set of harmonic oscillators with Boltzmann energy distri-
bution, all symmetrically coupled to a specific particle,
which hereafter we will refer to as the test particle. In the
limit of an infinite number of oscillators, and by properly
choosing the density of states and the initial conditions,
one can derive a stochastic equation which leads to so-
lutions with Boltzmann energy distribution for the test
particle, i.e. thermalization at the reservoir temperature.

To the best of our knowledge, however, there have been
no investigations of the conditions under which thermal-
ization of a test particle occurs in the presence of a realistic
heat bath with limited resources; namely a finite number
of degrees of freedom and a finite bandwidth. The clos-
est discussion in the literature regards thermalization of a
test particle with an independent oscillator heat bath, but
with oscillators distributed in a generic and unbound fre-
quency range [2], the study of interacting Fermi systems
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with finite numbers of particles [3], and the celebrated
Fermi-Pasta-Ulam problem, where nonlinear interactions
are crucial [4]. To consider a finite bandwidth for a finite
number of oscillators making a heat bath is significant
because in many contexts, in particular for systems of in-
terest in mesoscopic physics and nanotechnology, the size
of the environment is small and may no longer justify the
thermodynamic limit. This leads naturally to an infrared
cut-off for the density of states of the bath, as the latter
cannot support wavelengths much larger than its spatial
extent. Furthermore, the finite amount of energy in any
realistic environment demands an ultraviolet cut-off in its
density of states. In this paper, we describe results on the
thermalization of a test particle in the presence of a heat
bath comprising a finite number of harmonic oscillators
with frequencies distributed within a finite bandwidth.
The main result of our analysis is the emergence of diverse
scenarios for the statistical distribution of the energy of
the test particle, such as thermalization at the heat bath
temperature, Boltzmann distribution at a smaller temper-
ature than the heat bath, or no thermalization, depending
on the interplay between the intrinsic frequency of the test
particle and those of the heat bath. While our study fo-
cuses on the classical case, it points to a broad range of
implications in the physics of nanomechanical structures,
whose displacements may be monitored at or beyond the
standard quantum limit [5,6]. Furthermore, some of the
results reported here may find application wherever an
open system approach is necessary, encompassing systems
as diverse as classical plasmas and self-gravitating objects,
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ultracold trapped atoms and quasiparticles in nanostruc-
tures.

The starting point for our analysis is the Hamiltonian
of the test particle plus environment [7-9]:
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Here the test particle, with generalized coordinates (Q, P),
is modeled as a harmonic oscillator of mass M and angu-
lar frequency §2. The nth particle in the reservoir, a har-
monic oscillator of mass m and angular frequency w,,, is
characterized by generalized coordinates (gy,, p,). To avoid
unnecessary complications at this stage, the systems are
assumed to be one-dimensional. The coupling between the
test particle and the particles in the reservoir is chosen
to be translationally invariant, which eliminates the ap-
pearance of renormalization terms [10,11]. By writing the
Hamilton equations and solving for the particles of the
heat bath, a generalized Langevin equation for the test
particle is obtained [12,13]:
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where the kernel of the dissipative term (non local in time)
and the fluctuation force term are respectively:

I'it—s)= % Zwi cos|wn,(t — )], (3)

I(t) = % Zwi{(%(to) — Q(to)) cos|wn (t — to)]
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In the limit of infinite N extending over the continuum
frequency range w, € [0,400), with density of states
dN/dw o 1/w? and if the initial conditions for the bath
particles (gn,(to), pn(to)) are chosen to realize a Boltzmann
energy distribution, the test particle is described by a
Langevin equation (for an extensive discussion see [14])

dQ(t) = P(t)dt/M,
dP(t) = —[yP(t) + M2*Q(t)]dt + ddw(t),

(5)
(6)
where v = (mmw?/2M)(dN/dw) is the dissipation factor
(which becomes independent of w for a density of states
x 1/w?) and § = /2m~ykpT. The stationary solution of
equations (5, 6) corresponds to the thermalization of the
test particle energy with the same Boltzmann distribution
as the bath. Such a situation is highly idealized, since it
corresponds to an infinite number of oscillators with all
possible frequencies, and these conditions are not always
met in real physical systems.

To study the conditions under which thermalization
occurs in a more realistic setting, we have investigated the
dynamics of a reservoir characterized by a finite frequency
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spectrum w,, € [wir,wyv], a finite number of oscillators
N, a finite mass ratio m/M between the masses of the bath
particles and the test particle, for a uniform density of
states, obtained by a random choice of the bath particle’s
frequencies, such that dN/dw x 0(w—wir)+0(wyy—w)—1.

We do this by generating explicit numerical values for
the parameters which describe each bath oscillator, solv-
ing the equations of motion from equation (1) for the mo-
tion of the test particle, and sampling the test particle
energy over time. The initial conditions are chosen, for
the bath oscillators, to be randomly distributed in phase
space in such a way as to generate a Boltzmann distri-
bution for their energy, and consequently a well defined
temperature, while the test particle starts with zero to-
tal energy. The system of N + 1 oscillators can then be
solved exactly after numerical diagonalization of the ma-
trix describing the Hamiltonian evolution. Since the test
particle is a single system, no meaningful definition of its
temperature may be given in terms of the energy distri-
bution of a statistical ensemble at a given time. An ef-
fective temperature can still be defined by sampling the
energy of the test particle during its time evolution, col-
lecting an energy distribution over time, and fitting the
energy distribution with a Boltzmann distribution law.
This operative definition does, however, preclude observa-
tion of transient behaviour, at least on timescales smaller
or comparable to the time interval over which the energy
distribution is collected, in the test particle temperature.
Indeed, we find that the first effective temperature we are
able to define, when enough sample points have been col-
lected to limit the statistical error, is already the equilib-
rium temperature. This precludes in principle the study,
for instance, of the dynamics of nonequilibrium stationary
states, nonequilibrium phenomena such as aging in glassy
systems, or the approach to thermal equilibrium. Also, to
avoid the effect of possible recurrences and spurious peri-
odicities we have randomly chosen the sampling times for
the measurement of the test particle energy.

The energy distribution of the test particle is shown
in Figure 1 for various values of the bandwidth Aw =
wyv — wir of the frequency spectrum of the reservoir. For
a test particle interacting with a finite number of oscilla-
tors all degenerate in frequency (w, = wg), we do not ob-
serve thermalization, as the resulting energy distribution
is quite far from being Boltzmann in nature. Indeed, if the
initial conditions for the bath oscillators are distributed
symmetrically in phase space (such that ) ¢, (to) ~ 0,
> Pnlto) =~ 0), equations (3, 4), and (2) may be approx-
imated respectively as:

I(t —s) = Ew coslwr(t — s)], (7)
II(t) = —fw%Q(to) cos|wr(t —to)], (8)
Q) + &w}, 1 Q(s) sinwr(t — s)ds + 22Q(t) = 0, (9)

where 2 = (14 &)/20 and € = Nm/M.

The dynamics corresponding to equation (9) resem-
bles that of multiple oscillators experiencing beating phe-
nomena, with energy periodically transferred between the
test particle and the heat bath with a harmonic law,
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Fig. 1. Dependence of the energy distribution of the test par-
ticle on the frequency bandwidth of the bath oscillators. The
number of times Ny, the test particle is found to be with energy
between E and E+ AE (with AE = 0.5 the energy binding in-
terval) is plot versus the energy of the test particle (expressed
in arbitrary units). The heat bath consists of 400 harmonic os-
cillators with frequencies centered around the test particle fre-
quency, {2 = 60 in arbitrary units, and with bandwidth equal
to Aw =0 (resonant bath, (a)), Aw =10 (b), Aw =40 (c),
and Aw =80 (d). The test particle energy, initially assigned
to be zero, is sampled at random times, on average every 0.1
times its intrinsic period of oscillation. Apart from the degen-
erate bath case [15], we have observed that the test particle
approaches its stationary energy state regardless of its initial
conditions provided that these correspond to an initial energy
small enough. Measurements on the test particle are taken after
waiting a time long enough to yield stationary distributions,
with a total of 10* measurements. The mass ratio between the
bath particles and the test particle is m/M = 1073,

as Fi(t) = Eo{l + £/2[1 — cos(2t/2)]}, where E, is
the bath’s initial energy. The corresponding probability
density P(E) for the test particle to have energy between
E and E +dE is P(F)  (dE/dt)~" o« {(E — Eo)[Eo(1 +
¢) — E]}~'/2. This behaviour is shown in Figure la; evi-
dently a monochromatic reservoir is too deterministic to
allow scrambling of the exchanged energy, and we see here
that the test particle does not thermalize. With even a
modest bandwidth for the reservoir the coherent driving
of the test particle does not take place at the same level, as
shown in the top-right and bottom-left plots for increas-
ing values of the bandwidth, and above a given value the
energy distribution eventually approaches the Boltzmann
distribution, as shown in Figure 1d.

These results are obtained by keeping the spectrum
of the reservoir centered around the frequency of the test
particle. An asymmetric situation, in which the oscillation
frequency of the test particle is not centered within the
heat bath bandwidth, is depicted in Figure 2.

One can obtain situations with no thermalization,
thermalization at a temperature different from the one
of the reservoir, or complete thermalization, depending
upon the relative location of the test particle frequency
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Fig. 2. Dynamics of thermalization. From top-left to bottom
right: energy distribution for the heat bath composed of 400
oscillators (a), and energy distribution of the test particle, af-
ter 10" random samplings, with a frequency 2 = wir/20 (b),
2 = wir (C)7 2 = (wm -‘er\/)/Q (d)7 2 = wyv (e), and
2 = 20wuv (f). The straight lines are best fits with Boltz-
mann distributions. Since, as visible in (b) and (c), the energy
distribution differs significantly from the Boltzmann distribu-
tion at small §2, the corresponding quoted temperatures from
the Boltzmann fitting have to be interpreted as effective tem-
peratures, measuring the average energy of the test particle
rather than the slope of a Boltzmann distribution.

with respect to the frequency spectrum of the reservoir.
The reservoir, whose energy distribution is depicted in
the upper-left panel, is chosen with a bandwidth equal
to the one in Figure 1d. In the other five plots in Figure 2,
the energy distribution of the test particle is shown for in-
creasing values of its oscillation frequency. In particular,
at 2 < wir (panels (b) and (c)), the test particle does not
thermalize, and its energy distribution shows a peak at a
finite energy. In fact, in the limit {2 — 0 (free test particle)
and for Aw — 0 (resonant bath) the equations of motion
correspond to a driving force and an unlimited increase
of energy in time. The presence of a finite Aw introduces
dephasing among the oscillators and consequently a finite
and stationary energy peak proportional to £. In panel
(d), the particle reaches a Boltzmann distribution with a
temperature close to the one of the reservoir Ti, =~ Ties,
whereas in panels (e) and (f) the Boltzmann distributions
of the test particle correspond to significantly lower tem-
peratures.

By repeating the procedure for different values of the
angular frequency of the test particle, we find three differ-
ent regimes, as shown in Figure 3. At low angular frequen-
cies {2 < wrr, the test particle approaches an equilibrium
state of non-Boltzmann nature corresponding to an ef-
fective temperature significantly lower than the reservoir
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Fig. 3. Efficiency of thermalization versus test particle fre-
quency. Shown is the ratio between the temperature of the
test particle and the temperature of the heat bath versus the
angular frequency of the test particle (in arbitrary units), for
different mass ratios m/M. The heat bath is composed of 400
oscillators with uniform density of states between wir = 20
and wyv = 100, as indicated by the brown rectangle in the
lower part of the plot.

temperature, with a flat dependence upon the frequency.
The lack of thermalization in this situation resembles the
situation of the Brownian motion of a free particle (obtain-
able in our case as the limit £2 — 0) coupled to a bath with
super-Ohmic density of states [16]. In the intermediate
regime wig < 2 < wyvy, the test particle generally ap-
proaches complete thermalization at Ti, ~ Tie. In the
region where {2 > wyv, the test particle has a Boltzmann
energy distribution at a temperature Ti, < Tes which
is frequency-dependent. This may be understood by con-
sidering the fact that a finite ultraviolet cut-off for the
heat bath implies non-Markovian behaviour. Then a high-
frequency test particle should be dynamically decoupled
from the heat bath in analogy to the mechanism intro-
duced in [17,18] for open quantum systems. Notice that,
in the case of m/M = 0.1 in Figure 3 (and, less manifestly,
for the curve at m/M = 10~2), the region of nearly com-
plete thermalization is shifted towards significantly larger
frequencies with respect to the interval [wir,wuv]. The
obtained data are stable with respect to the choice of the
initial time at which the sampling of the test particle en-
ergy is performed; even waiting more than four orders of
magnitude does not change the thermalization pattern.

This behaviour may be qualitatively understood by
thinking of the case of a degenerate heat bath. In this ex-
treme situation, the particle is either in resonance with the
bath oscillators, trading energy in an efficient way, or oth-
erwise always detuned, limiting the energy exchange both
in amplitude and speed. Since the effective frequency of os-
cillation of the test particle in equation (9) is renormalized
as 2 = (14 &)1/20, if € is significantly larger than unity
we expect the resonance to occur at angular frequencies
higher than the intrinsic angular frequency of the test par-
ticle. In the cases of m/M = 1072 and m/M = 10~! we
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Fig. 4. Dependence of the efficiency of thermalization upon the
particle masses. Shown is the ratio between the temperature of
the test particle and the temperature of the heat bath versus
the ratios between the mass of the test particle and the mass
of the oscillators in the heat bath. Different plots correspond
to different frequencies of the test particle, from 2 = 0.1wir
to 2 = 10wuv, as described in the legend.

expect, respectively, 2 = /582 and 2 = /41(2, and the
shifts of the thermalization regions are in agreement with
this scaling. This has as a further implication a non mono-
tonic dependence of the thermalization upon the mass ra-
tio m/M, which cannot be trivially addressed in a per-
turbative approach [19]. At constant {2, we expect that
by increasing the mass ratio, the parameter £ becomes
so large as to detune the effective response of the test
particle, making its thermalization to the heat bath less
efficient.

This feature is clearly evidenced in Figure 4, where
the mass ratio dependence is shown for four frequencies in
different spectral regions. For small values of (2, thermal-
ization is initially proportional to m/M, then decreases
when this parameter is in the 10~2 range. For £2 > wyy,
the behaviour of Ty, /Tres is well described by a direct pro-
portionality law, i.e. Tip/Tres =~ m/M. We have also re-
peated the simulations for various examples of the density
of states of the particles in the heat bath, with very little
effect on the thermalization features apart from the peak
region, as will be reported elsewhere [20].

In conclusion, we have studied thermalization of a test
particle in contact with a finite reservoir, showing that
this occurs only for specific relationships between the fre-
quency and the mass of the test particle and the corre-
sponding quantities of the particles constituting the reser-
voir. These results may be understood as the intermediate
case between the two extreme situations of a reservoir with
an infinite bandwidth and a reservoir with a degenerate
spectrum of frequencies. The analysis can be extended to
generic, nonlinear couplings between the test particle and
the reservoir with numerical techniques.

The interpretation of two recent experiments in
nanomechanics may be reconsidered in light of the results
obtained here. In particular, the observation of discontin-
uous features in the mechanical transfer function of
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high-frequency  nanoresonators operated at low
temperatures reported in [21], could be attributed
to non-equilibrium features of the test particle, in this
case a high-frequency mode of a nanomechanical struc-
ture. Our conjecture is that for nanomechanical structures
the infrared cut-off frequency wig (ultraviolet cut-off fre-
quency) is significantly larger (smaller) than in the bulk.
The infrared cut-off is determined by the lowest frequency
which sustains stationary vibrations in the structure, and
for typical sound speeds (vs ~ 103-10* m/s) and typical
sizes involved in high frequency nanoresonators (100 nm—
lpm) as in [21], we can easily have wig ~ 1-10 GHz,
realizing a situation where {2 < wir. Likewise, the Debye
frequency could differ significantly with respect to the
bulk situation due to the effective lower dimensionality
of the nanostructure. The effective temperature felt by
the nanoresonator could then be quite different from the
one expected by measuring the external bath to which it
is coupled. This should be confirmed by both dedicated
experiments on thermal properties, such as specific heat
and heat conductivity, ab initio calculations of the density
of states, as well as repetitions of the experiments with
higher frequency resonators and modified size of the
structures, possibly leading to a new route to investigate
non-equilibrium quantum statistical mechanics [22].

Also, in [23], a phenomenon of cooling has been in-
terpreted as due to quantum back-action of the read-out
system, even though the system was well above the stan-
dard quantum limit. A more economical interpretation is
instead available by imagining the effective temperature of
the nanoresonator as resulting from the competition be-
tween two effective classical heat baths at different tem-
peratures. This is in line with the phenomenon of cold
damping introduced eight decades ago [24], and demon-
strated for macroscopic resonators in [25]. Moreover, the
data show intriguing anomalies, since the effective noise
temperature and the noise spectral densities reported give
values 102 and 15 times above the standard quantum limit,
respectively [23]. This large discrepancy could be due to
a partial thermalization of the nanoresonator in the pres-
ence of two competing baths. From our perspective, the
study of the thermalization of a particle in simultaneous
interaction with two heat baths should shed light on this
phenomenon already at the classical level, especially fo-
cusing on the energy distribution which, in the presence
of finite resources, is not necessarily of Boltzmann nature.
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